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Abstract We propose an algorithm for the global optimization of three problem classes:
generalized semi-infinite, continuous coupled minimax and bi-level problems. We make no
convexity assumptions. For each problem class, we construct an oracle that decides whether
a given objective value is achievable or not. If a given value is achievable, the oracle returns
a point with a value better than or equal to the target. A binary search is then performed
until the global optimum is obtained with the desired accuracy. This is achieved by solving
a series of appropriate finite minimax and min-max-min problems to global optimality. We
use Laplace’s smoothing technique and a simulated annealing approach for the solution of
these problems. We present computational examples for all three problem classes.

Keywords Generalized semi-infinite · Minimax · Bi-level · Globaloptimization ·
Min-max-min

1 Introduction

In this paper we provide a method for the global optimization of three related problems. The
first problem is the Generalized Semi Infinite Problem (GENSI):

min
x

f (x) (P1)
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subject to

x ∈ M = {x ∈ A ⊆ R
n |g(x, y) ≤ 0, ∀y ∈ Y (x)}

with

Y (x) = {y ∈ B ⊆ R
m |vi (x, y) ≤ 0, i ∈ I }

and I being a finite index set. Applications of GENSI include lapidary cutting problems [1],
reverse Chebyshev approximation [2] and minimal time control [3]. For a survey on GENSI
the reader is referred to [4]. If Y does not depend on x then we have a standard semi-infinite
problem. For a survey see [5]. A global optimization algorithm for standard semi-infinite pro-
gramming is presented in [6]. To the best of our knowledge, no global optimization algorithm
for the generalized semi infinite problem has been presented so far.

The second problem we consider is the continuous minimax problem with coupled con-
straints (MMC)

min
x∈A⊆Rn

max
y∈B⊆Rm

f (x, y) (P2)

subject to

gi (x, y) ≤ 0, i ∈ I,

where I is a finite set.
MMC’s arise in multiple disciplines, including engineering [7,8], finance [9], farm plan-

ning [10], machine learning [11] and location problems [12]. In general they are used in
decision under uncertainty to compute the worst case outcome when the decision is taken
after the uncertainty has been resolved.

There are many local optimization algorithms in the literature that deal with the uncon-
strained continuous minimax problem [13,9] and the continuous minimax problem with
decoupled constraints [14–16], i.e., a problem of the type

min
x∈X⊆Rn

max
y∈Y⊆Rm

f (x, y).

In [17] a global optimization algorithm is given for the decoupled constraints case where
f , X , Y are described by polynomials.

However, few contributions are available that address the case of coupled constraints.
Under convexity and concavity assumptions a relaxation procedure has been presented in
[18], and an interior point algorithm in [15]. A parametric approach for the linear case is pre-
sented in [7]. In [19], the constraint maxy g(x, y) ≤ 0 is considered. This constraint is easier
to treat because firstly it restricts only x , and secondly it does not depend on the individual
y choices. In essence it is a constraint on x which is hard to calculate, but not a coupled
constraint. Royset et al. [20] present an algorithm that solves the coupled constraint problem
for general functions to local optimality. They use an exact penalty function and transform
the problem into a min-max-min problem.

The third problem, is the bi-level programming problem (BLP)

min
x,y

F(x, y), (P3)

subject to

G(x, y) ≤ 0,
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x ∈ X,

y ∈ arg min{ f (x, y) : g(x, y) ≤ 0, ∀y ∈ Y }.
BLP can be interpreted as a leader follower game. The leader chooses a vector x , and the

follower responds with a vector y optimizing his own objective (given x). The leader seeks to
find the optimum x , taking into consideration the impact that his choice has on the follower.
The formulation implies that whenever the follower has more than one optimal solution, the
leader can choose the one that optimizes his own objective.

When the inner problem is convex, the most common approach is to substitute the inner
problem with its Karush–Kuhn–Tucker (KKT) conditions to obtain an equivalent single-level
problem. The transformed problem fails to be convex even in the linear case because of the
complementary conditions, and therefore global optimization algorithms are needed to obtain
the global optimum. A global optimization algorithm for the linear and quadratic case is pre-
sented in [21]. Recently, techniques from parametric global optimization [22] have been used
for the same class of problems [23]. If the inner problem is non-convex, an extra difficulty is
that a point might satisfy the KKT conditions while failing to be the global optimum of the
inner problem.The first valid algorithm for the general non-convex inner problem case was
presented recently in [24].

The three problems are closely related. The coupled minimax problem is a special case of
the bi-level programming problem with G = g and f = −F . Thus, the algorithm in [24] can
also handle it. In [25] it is observed that if Y (x) is nonempty for all x , (P1) can be formulated
as the bilevel program

min
x

f (x)

subject to

g(x, y0) ≤ 0,

y0 ∈ arg min
y

{−g(x, y) : y ∈ Y (x)}.

The opposite is also possible. That is, the bi-level problem (P3) can be formulated as the
GENSI problem

min
x,y f

F(x, y f )

subject to

G(x, y f ) ≤ 0,

g(x, y f ) ≤ 0,

x ∈ X

f (x, y f ) − f (x, y) ≤ 0 ∀y ∈ Y (x)

with

Y (x) = {y ∈ Y : g(x, y) ≤ 0}.
Since we made no assumptions, it is the GENSI problem that is the most general one.
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Table 1 Initial lower bounds Problem class Initial LB

GENSI minx∈A f (x)

MMC minx∈A,y∈B { f (x, y) : g(x, y) ≤ 0}
BLP minx∈X,y∈Y {F(x, y) : G(x, y) ≤ 0}

In all three cases, instead of solving the problem directly, we ask whether we can achieve
a target value f0. If we can provide a definite answer to this question for an arbitrary f0, then
we can do a binary search in the space of objective values to identify a point that is nearly
globally optimal. Note that the feasible region of a GENSI problem may not be closed, and
thus the problem may not have a global optimum [25].

For a given target value we construct an unconstrained min-max-min optimization prob-
lem with an optimal value smaller or equal to 0 if fo is achievable and greater than zero
otherwise. The outer minimization and the maximization of the problem are over continuous
variables while the inner minimization is discrete.

To solve the problem we discretize the maximization variables and dynamically add points
to the discrete approximation as described in the next Section. The min-max-min problem
need not be solved to optimality: as soon as the bounds generated by the discrete approxi-
mations allow to decide whether the optimal value is larger than 0 or not, the process can be
terminated.

In order to start the binary search we need initial upper and lower bounds. For an initial
upper bound on fo we only need an evaluation of the objective function at a feasible point.
Computing lower bounds is not hard either, as long as we do not demand them to be partic-
ularly tight. One possible way to obtain initial lower bounds is summarized in Table 1. Note
however, that for all practical problems this may not be necessary. Any “good” guess will
suffice since we do not require the lower bound to be particularly tight. The oracle can decide
much faster when the target value is far from the optimum value. Thus initial tight bounds
are less important than it may appear.

The remaining of the paper is organized as follows. In Sects. 2, 3 and 4 we construct
oracles for the GENSI, MMC and BLP problems respectively. In Sect. 5 we discuss the
global optimization algorithm used for the solution of the finite minimax and min-max-min
subproblems. In Sect. 6 we provide numerical results and in Sect. 7 we conclude.

2 GENSI

Given a target value f0 we are looking for an x such that

f (x) − f0 ≤ 0 (1)

and

min{g(x, y), min
i

−vi (x, y) + ε} ≤ 0 ∀y ∈ B (2)

where ε > 0 is an infeasibility tolerance. Equation 2 ensures x is feasible since it can be read
as

∀y, vi (x, y) < ε ∀i ⇒ g(x, y) ≤ 0.
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We formulate the unconstrained min-max-min problem

min
x∈A

max
y∈B

max{ f (x) − f0, min{g(x, y), min
i

−vi (x, y) + ε}}. (3)

Proposition 2.1 If the optimal value of (3) is less than or equal to 0 then fo is achievable
for (P1).

Proof If xo is the optimal solution to (3) and the optimal value of (3) is less than or equal to
0, then we have

f (xo) ≤ fo

and

∀y, vi (x0, y) ≤ 0 ∀i ⇒ vi (x0, y) < ε ∀i ⇒ g(x0, y) < 0.

Therefore xo is a feasible solution of (P1) and achieves a value better than or equal to fo. ��
Proposition 2.2 If for every ε > 0 the optimal value of (3) is larger than 0 then fo is not
achievable for (P1).

Proof Assume that fo is achievable, that is, there exists a feasible solution of (P1) x1, with
f (x1) ≤ f0. Since x1 is feasible, we have

∀y, ∃i vi (x1, y) = α > 0 or g(x1, y) ≤ 0.

Therefore

∀y min{g(x, y), min
i

−vi (x, y) + α} ≤ 0

and

max
y∈B

max{ f (x1) − f0, min{g(x1, y), min
i

−vi (x1, y) + α}} ≤ 0

which contradicts the hypothesis for ε < α and thus fo is not achievable. ��
A short remark is in place to justify the use of ε. If we solve the problem

min
x∈A

max
y∈B

max{ f (x) − f0, min{g(x, y), min
i

−vi (x, y)}}

instead and the optimal value is 0, it is not possible to tell whether fo is achievable or not.
For example, if at the optimal solution (x0, y0) there is a j ∈ I with

v j (x0, y0) = 0, vi (x0, y0) < 0, ∀i 	= j,

g(x0, y0) > 0,

f (x0) ≤ f0,

then the optimal solution will be 0 but the point (x0, y0) is not feasible. If, on the other hand,
we have

vi (x0, y0) < 0, ∀i,

g(x0, y0) = 0,
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f (x0) ≤ f0,

then (x0, y0) is feasible and we know fo is achievable. This is not just a technicality but can
happen in practical problems.

We use a two phase procedure for the solution of (3) as in [26]. At every iteration, the
algorithm attains a finite set Yk ⊂ B and solves the problem

min
x∈A

max
y∈Yk

max{ f (x) − f0, min{g(x, y), min
i

−vi (x, y) + ε}}. (4)

If at an iteration the optimal solution of (4) has a positive objective Fl
k . the oracle states

that fo is not achievable. This is justified because the optimal value of (4) defines a lower
bound on the optimal value of (3). Otherwise if it returns the point xk the problem

max
y∈B

min{g(xk, y), min
i

−vi (xk, y) + ε}} (5)

is solved.
If (5) returns a value Fu

k less than or equal to 0, the oracle announces that fo is achievable
and xk guarantees an objective better than or equal to fo. This is because Fu

k is an upper
bound for the optimal value of (3). If, on the other hand, (5) returns a value larger than 0, the
solution yk+1 is added to Yk and phase one is run with the new set Yk+1. It is shown in [26]
that solutions of the problems (4) generate subsequences of points converging to a solution
of problem (3) and thus the procedure terminates.

Computational experiments have revealed that the algorithm performs better if we main-
tain a number of maximizers in Yk , when we update fo.

3 Minimax problems with coupled constraints

Consider the problem,

min
x∈A⊂Rn

max
y∈B⊂Rm

f (x, y)

subject to

gi (x, y) ≤ 0 ∀i ∈ I,

where I is a finite set.
In the same vein as in Sect. 2 we ask whether a given value fo is achievable. That is, we

are looking for an x with

∃y f , gi (x, y f ) ≤ 0 ∀i ∈ I, (6)

∀y ∈ B, min{min
i

−gi (x, y) + ε, f (x, y) − f0} ≤ 0. (7)

Equation 6 guarantees that x is feasible. Equation 7 ensures that for this x , every feasible y
gives an objective value better than or equal to the target objective.

In order to find such an x , we solve the problem

min
x∈A,y f ∈B

max{max
i∈I

gi (x, y f ), max
y∈B

min{min
i

−gi (x, y) + ε, f (x, y) − f0}.
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We solve this problem by the same two phase algorithm. It is easy to see that the discrete
approximation solved in phase 1,

min
x∈A,y f ∈B

max{max
i∈I

gi (x, y f ), max
y∈Yk

min{min
i

−gi (x, y) + ε, f (x, y) − f0}

is a finite min-max-min problem. The corresponding phase 2 problem is the finite minimax
problem

max
y∈B

min{min
i

−gi (x, y) + ε, f (x, y) − f0}.

The algorithm terminates affirmatively whenever phase 1 returns a positive objective value
and negatively whenever phase 2 returns a negative one or zero.

4 Bi-level problems

In the Bi-level problem, given the target fo we are looking for an x, y f with

F(x, y f ) − fo ≤ 0 (8)

Gi (x, y f ) ≤ 0 (9)

g j (x, y f ) ≤ 0 (10)

∀y ∈ Y, min{min
j

−gi (x, y) + ε, f (x, y f ) − f (x, y)} ≤ 0. (11)

Equation 11 ensures that yo is a solution to the follower’s problem given x , and thus that
(x, y f ) is feasible.

The min-max-min problem we need to solve is

min
x,y f

max{F(x, y f ) − fo,

max
i

Gi (x, y f ),

max
j

g j (x, y f ),

max
y∈Y

min{min
j

−gi (x, y) + ε, f (x, y f ) − f (x, y)}}.

The discrete approximation is

min
x,y f

max{F(x, y f ) − fo,

max
i

Gi (x, y f ),

max
j

g j (x, y f ),

max
y∈Yk

min{min
j

−gi (x, y) + ε, f (x, y f ) − f (x, y)}},

and the corresponding phase 2 problem is

max
y∈Y

min{min
j

−gi (xk, y) + ε, f (xk, y f,k) − f (xk, y)}.
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In addition to the termination criterion used for GENSI problems, we terminate affirmatively
whenever phase 2 when feeded by phase 1 with xk , computes a yk with

F(xk, yk) ≤ fo (12)

and

Gi (xk, yk) ≤ 0 ∀i. (13)

This is to avoid waiting for y f to converge to the actual optimum of the inner problem, which
is not always necessary to correctly announce that fo is achievable. From Eq. 13 and the fact
that yk solves the inner problem at xk we know that (xk, yk) is feasible and if it achieves a
value better than fo as Eq. 12 states, fo can be declared achievable.

5 Global optimization of subproblems

The algorithm described in Sect. 1 assumes that all subproblems are solved to global opti-
mality. This is less important for problem (4) if it returns a value less than 0, and for problem
(5) if it returns a value larger than 0, since the algorithm does not terminate and will have
another chance for a better search. Whenever the oracle returns and announces an answer
however, it is vital that the last optimization problem is solved to global optimality.

For both problems we use a smoothing technique based on the Laplace method which
was introduced as a tool for minimax and min-max-min problems by Polak [27,28]. In the
min-max-min problem, we apply the smoothing technique twice to reduce the problem to
the minimization of a smooth function.

The maximin problem

max
x

min
i

fi (x)

is approximated by

max
x

�λ(x) = − 1

λ
ln

(∑
i

e−λ fi (x)
)
,

and the min-max-min problem

min
x

max
i

min
j

fi, j (x)

is approximated by

min
x

�λ(x) = 1

λ
ln

(∑
i

1∑
j e−λ fi, j (x)

)
,

where λ > 0 is the smoothing parameter [29]. We use the stochastic global optimization
algorithm described in [30] for the solution of the problems:

The stochastic search method follows the trajectory of the Langevin equation

d X (t) = −∇�λ(X (t))dt + T (t)d B(t), (14)

where T (t) is the “cooling” schedule and B(t) the standard Brownian motion. It is shown in
[30] that the solution of (14) X (t) converges to the global optima of �λ(X (t) as t goes to
infinity.
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The quality of the solution of the overall algorithm depends on the quality of the global
optimizer used for the subproblems. Since we are using a stochastic algorithm for the sub-
problems, even though our analysis was exact for the higher level algorithm, the overall
construction remains stochastic. In principle, it is possible to solve the problems using a
deterministic approach.

In order to solve the finite min-max-min problem

min
x

max
i

min
j

fi, j (x),

one can use a branch and bound approach, where the lower bounds are calculated by

max
i

min
j

min
x

fi, j (x)

and for upper bounds we use function evaluations. For the solution of the problems

min
x

fi, j (x)

there are many deterministic global optimization algorithms in the literature, e.g. [31].
We note, however, that if one uses a deterministic method, it would be advantageous to

combine it with a faster stochastic method. The deterministic one should be used whenever
the stochastic one asserts than no feasible point with value better than 0 exists—less than 0
for (4) and larger than 0 for (5)—to check whether the stochastic’s method assertion is indeed
correct.

6 Numerical examples

Example 1 The first example is a continuous minimax problem with coupled constraints
taken from [20].

min
x1,x2,x3

max
y

3(x1 − y)2 + (2 − y)(x2)
2 + 5(x3 + y)2 + 2x1 + 3x2 − x3 + e4y2

subject to

1

4
sin(x1x2) + y − 1

2
≤ 0

0 ≤ y ≤ 1.

In [20] the local minimizer

x = {−0.0033,−1.0002,−0.3928}
is obtained with an objective value 2.4100.

We run our algorithm with a starting objective window [−10,10]. The results of each
iteration are given in Table 2. At the best point attained

x = {−0.38623,−1.18495,−0.28284}
the maximizer is y = 0.38953674 and the objective value 1.91399.

123



244 J Glob Optim (2009) 44:235–250

Table 2 Numerical results of Example 1

Target fo x1 x2 x3 Achieved New window

0 No [0,10]

5 0.455073 −1.22052 −0.5095 Yes [0.5]

2.5 −0.45986 −1.29386 −0.3026 Yes [0,2.5]

1.25 No [1.25,2.5]

1.875 No [1.875,2.5]

2.1875 −0.45986 −1.29386 −0.3026 Yes [1.875,2.1875]

2.03125 −0.45986 −1.29386 −0.3026 Yes [1.875,2.03125]

1.95313 −0.45272 −1.23876 −0.25808 Yes [1.875,1.95313]

1.91406 −0.38623 −1.18495 −0.28284 Yes [1.875,1.91406]

Table 3 Numerical results of
Example 2

Target fo x y Achieved New window

0 No [0,1]

0.5 −5.8×10−12 0 Yes [0,0.5]

0.25 −5.8×10−12 0 Yes [0,0.25]

0.125 −5.8×10−12 0 Yes [0,0.125]

0.0625 −5.8×10−12 0 Yes [0,0.0625]

0.03125 −5.8×10−12 0 Yes [0,0.03125]

0.0156 −5.8×10−12 0 Yes [0,0.0156]

Example 2 This example is a bilevel program taken from [25].

min
x,y

F(x, y) = y − x,

subject to

x ≤ 1,

y ∈ arg min{−x − y : −x · y ≤ 0, 0 ≤ y ≤ 2}.
The feasible region is the open set

{(x, 0) : x < 0} ∪ {(x, 2) : 0 ≤ x ≤ 1},
and the problem does not have a global optimal solution. A local minimizer is (x0, y0)=(1, 2)

with F(x0, y0) = 1. We run our algorithm with an initial window (−2, 2) and the results
are given in Table 3. Our algorithm locates a feasible point (x1, y1) with F(x1, y1) = 5.8 ×
10−12.

Example 3 Consider the bilevel program

min
x1,x2,x3,y

3(x1 − y)2 + (2 − y)(x2)
2 + 5(x3 + y)2 + 2x1 + 3x2 − x3 + e4y2

123



J Glob Optim (2009) 44:235–250 245

Table 4 Numerical results of Example 3

Target fo x1 x2 x3 y Achieved New window

0 0.049755 −0.74818 0.099399 0 Yes [−25,0]

−12.5 No [−12.5,0]

−6.25 No [−6.25,0]

−3.125 No [−3.125,0]

−1.5625 No [−1.5625,0]

−0.78125 No [−0.78125,0]

−0.39063 No [−0.39063,0]

−0.19531 −0.02853 −0.75103 0.101894 0.03577 Yes [−0.39063,−0.19531]

−0.29297 No [−0.29297,−0.19531]

−0.24414 No [−0.24414,−0.19531]

−0.21973 No [−0.21973,−0.19531]

−0.207518 −0.03585 −0.74956 0.075502 0.035777 Yes [−0.21973,−0.207518]

−0.213621 −0.05162 −0.76646 0.053737 0.051561 Yes [−0.21973,−0.213621]

subject to

x0 + x1 ≤ 2,

y ∈ arg min

{
(x1 + y)2 + x2 · cos(x3 · y) : 0 ≤ y ≤ 1,

1

4
sin(x1x2) + y − 1

2
≤ 0

}

We run the algorithm with an initial window of (−25,25) and the results are given in Table 4.

Example 4 Consider the following reverse Chebyshev approximation problem. We want to
approximate the function sin(y) with a second degree polynomial to achieve an error less
than 0.2 for all y ∈ [1 − r, 1 + r ] while maximizing r . The Taylor expansion

sin(1) + cos(1) (y − 1) − sin(1)

2
(y − 1)2

achieves r = 1.175.
The problem can be formulated as a GENSI problem

min
r,α,β,γ

−r

subject to

| sin(y) − αy2 − βy − γ | ≤ 0.2, ∀y ∈ Y (r)

with

Y (r) = [1 − r, 1 + r ],

r > 0.

We start our algorithm with an initial window [−10,0] and the results are given in Table 5.
The approximation we derive achieves r = 2.0996.

In the appendix we present the first few iterations of a bi-level example problem to illustrate
our proposed algorithm.
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Table 5 Numerical results of Example 4

Target fo α β γ Achieved New window

−5 No [−5,0]

−2.5 No [−2.5,0]

−1.25 −0.29193 1.0315 0.05829 Yes [−1.25,−2.5]

−1.875 −0.27688 0.902387 0.131236 Yes [−1.875,−2.5]

−2.1875 No [−1.875,−2.1875]

−2.03125 −0.26377 0.842673 0.153396 Yes [−2.03125,−2.1875]

−2.10938 No [−2.03125,−2.10938]

−2.07031 −0.26317 0.835821 0.155965 Yes [−2.07031,−2.10938]

−2.08984 −0.26157 0.832648 0.161875 Yes [−2.08984,−2.10938]

−2.09961 −0.25958 0.824561 0.160268 Yes [−2.09961,−2.10938]

7 Concluding remarks

We have presented an algorithm for the global optimization of non-convex generalized semi-
infinite, minimax with coupled constraints, and bi-level problems. To the best of our knowl-
edge, in the generalized semi-infinite case, it is the first algorithm that can solve non-convex
problems to global optimality. Until the recent work in [24], the global optimization of gen-
eral non-convex bi-level problems and minimax with coupled constraints were also open
problems. In our implementation we used a stochastic algorithm for the global optimization
of the subproblems, but in principle a deterministic approach can be used.

Acknowledgements The authors wish to acknowledge support from EPSRC grants GR/T02560 and
EP/C513584/1.

Appendix

To illustrate the algorithm we follow step by step the first few iterations of the following
bi-level problem

min
x,y

F(x, y) = x · y (15)

subject to

−10 ≤ x ≤ 1

y ∈ arg min y4 + 2.7y3 + 0.3y2 − 1.4x · y

y free.

In Phase one we solve problems of the form

min
x,y f

max{x · y − fo, max
yi ∈Yk

f (x, y f ) − f (x, yi )}
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with

f (y) = y4 + 2.7y3 + 0.3y2 − 1.4x · y).

In Phase 2 we solve

max
y

f (x, y f ) − f (x, y).

We denote with PA = (x, y f , obj) the results of phase one and with PB = (y, obj) the
results of phase two.

We start with an initial window [−4,0].
Iterations

• We start with Y = {0} and solve

min
x,y f

max{x · y + 2, f (x, y f ) − f (x, 0)}.

We obtain PA = (1,−12.5388,−10.5388). We solve

max
y

f (x,−12.5388) − f (x, y),

and we obtain PB = (−1.83997, 19462). We set

Yk = {0,−1.83997}.
We solve

min
x,y f

max{x · y + 2, f (x, y f ) − f (x, 0), f (x, y f ) − f (x,−1.83997)}.

and we obtain PA = (1,−1.93924, 0.06075 > 0) and fo = −2 is not achievable. Note
that only the last problem was solved to global optimality.

• We solve the phase 1 problem and we obtain PA = (0.537175,−1.89459,−0.01768).
We solve

max
y

f (0.537175,−1.89459) − f (0.537175, y)

and we obtain PB = (−1.89333,−1.039 × 10−5).We set

Yk = {0,−1.83997,−1.89333}.
We have

F(0.537175,−1.89459) = −1.017 < f0

and f0 = −1 is achievable.
• We solve the phase 1 problem and we obtain PA = (0.806226,−1.86449,−0.06319).

We solve

max
y

f (0.806226,−1.86449) − f (0.806226, y)

and we obtain PB = (−1.86321,−9.84 × 10−6). We set

Yk = {0,−1.83997,−1.89333,−1.86321}.
We have

F(0.806226,−1.86449) < f0

and f0 = −1.5 is achievable.
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• We solve the phase 1 problem and we obtain PA = (0.947709,−1.84685,−0.06024).
We solve

max
y

f (0.947709,−1.84685) − f (0.947709, y)

and we obtain PB = (−1.84648,−8.1 × 10−7). We set

Yk = {0,−1.83997,−1.89333,−1.86321,−1.84685}.
We solve the phase 1 problem and we obtain PA = (0.974548,−1.84322,−6.1 × 10−5).
We solve

max
y

f (0.974548,−1.84322) − f (0.974548, y)

and we obtain PB = (−1.84323,−2.2 × 10−10). We set

Yk = {0,−1.83997,−1.89333,−1.86321,−1.84685,−1.84323}.
We have

F(0.97454,−1.84323) < f0

and f0 = −1.75 is achievable.
• We solve the phase 1 problem and we obtain PA = (1,−1.86983, 0.605 > 0). The value

f0 = −1.875 is not achievable.
• We solve the phase 1 problem and we obtain PA = (0.983875,−1.84222,−2.5 × 10−5).

We solve

max
y

f (0.983875,−1.84222) − f (0.983875, y)

and we obtain PB = (−1.84209,−9.3 × 10−8). We set

Yk = {0,−1.83997,−1.89333,−1.86321,−1.84685,−1.84323,−1.84209}.
We solve the phase 1 problem and we obtain PA = (0.992533,−1.84104,−6.4 × 10−6).
We solve

max
y

f (0.992533,−1.84104) − f (0.992533, y)

and we obtain PB = (−1.84103,−1.6 × 10−9). We set

Yk={0,−1.83997,−1.89333,−1.86321,−1.84685,−1.84323,−1.84209,−1.84103}.
We have

F(0.992533,−1.84103) < f0

and f0 = −1.8125 is achievable.

Continuing in the same manner we find that the optimum is given at x = 1, y = −1.8401
with an outer objective value equal to −1.8401.
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